
Week 4 Discussion

Wednesday, 1/29/20

Reminders
PA 4 due Thursday, 2/6

Quiz during discussion on 2/12

PA 4 Overview
2048
Random class
Enum

Required vs optional methods

Today’s agenda

Demo
Link to game

http://2048game.com/

Config.java
● This file contains constants and settings for playing the game.
● You can modify the values of some of the constants for testing

purposes but DO NOT ADD any additional constants.

Enumeration (Enums)
• An Enum is a special Java type used to define collections of constants.
• An Enum can contain constants, methods etc.
• They are different from static final constants.

public enum Level {
 HIGH,
 MEDIUM,
 LOW
}

Level level = Level.HIGH;

// assign some Level constant to it
Level level = ...
if(level == Level.HIGH) { ... }
else if(level == Level.MEDIUM) { ... }
else if(level == Level.LOW) { ... }

for (Level level : Level.values()) {
 System.out.println(level);
}

Output:
HIGH
MEDIUM
LOW

Direction.java
● This file contains an Enum
● Four direction constants

○ DOWN (0)
○ LEFT (1)
○ UP (2)
○ RIGHT (3)

● What does LEFT (1) mean?
○ Define a constant named LEFT and initialize it with the

constructor that takes in a single int.

java.util.Random

● Allows you to generate pseudo-random numbers

● How can we test our code if it is generating random values?

○ Pass in your own seed

● Example:
○ Random rand = new Random(123);
○ System.out.println(rand.nextInt(10)); // outputs 2
○ System.out.println(rand.nextInt(10)); // outputs 0
○ System.out.println(rand.nextInt(10)); // outputs 6

● You are free to specify a seed in your code to test your methods.

● We will not be deducting points for using your own seed for your Random

objects.

https://docs.oracle.com/javase/10/docs/api/java/util/Random.html

GameState.java
● You will write this class from scratch.
● Requirements:

○ Class declaration: public class GameState
○ Must follow all the method signatures in the writeup

● No restrictions on instance variables
○ Suggestions from writeup:

■ private Random rng;
■ private int[][] board;
■ private int score;

Constructor [REQUIRED]
● public GameState (int numRows, int numCols)

○ Create a board (must be a 2d array) with numRows rows and
numCols columns.

○ Set your starting score to 0.
○ If random object is created here, RANDOM_SEED in

Config.java may be helpful

Getters/Setters [REQUIRED]
● int[][] getBoard()

○ Return a deep copy of the board
● void setBoard(int[][] newBoard)

○ Make a deep copy of the board and set the board
● int getScore()
● void setScore (int newScore)

toString() [REQUIRED]
● Code is given in starter code for consistency

● Note: the board variable should be whatever your getBoard()
returns

● If you do not represent your board in this way, you should
change all instances of board to getBoard().

Generating tiles
● int rollRNG(int bound) [Optional]

○ Return a random integer between 0 (inclusive) and bound
(exclusive)

● int randomTile() [REQUIRED]
○ Either 2 or 4 tile will be added.
○ Hint: In Config.java, TWO_PROB means the probability out of

100 times. How can we use the Random object for this?
● int countEmptyTiles() [REQUIRED]
● int addTile() [REQUIRED]

○ Randomly choose a tile location and place a tile
○ What happens if the board is full?
○ Return the tile value you just added

Movement

move(Direction dir) [REQUIRED]
● Move the board in the direction dir.
● If movement is successful, add a tile using addTile()
● Multiple ways to move the board

○ Some ideas:
1. Implement canSlideDown(), slideDown(), board rotation
2. Using equals to implement canSlideDown(), slideDown()

● Feel free to define any private helper methods

rotateCounterClockwise() [Optional]

Why rotate?

0 2 0 0

0 0 0 4

8 0 0 0

0 0 0 0

how do we
move right?

0 8 0 0

0 0 0 2

0 0 0 0

0 0 4 0

rotate the board
counterclockwise

3 times

0 0 0 0

0 0 0 0

0 0 0 0

0 8 4 2

0 0 0 2

0 0 0 4

0 0 0 8

0 0 0 0

rotate the board
counterclockwise 1

time

You can follow this process to move in the other
directions

slide down

isGameOver() [REQUIRED]
● Return true if the board cannot be moved in any direction
● canSlideDown() and rotateCounterClockwise() can be helpful

canSlideDown() [REQUIRED]
● Checking whether the board can slide down
● Two cases where sliding is possible:

○ If two tiles can be combined. Two tiles can be combined if
they share the same value and there are no other tiles
between them (empty tiles can be between them).

○ If there is an empty tile below a non-empty tile.
● How? A loop? Or a smarter way you can think of?

slideDown() [REQUIRED]
● Slide the board down and return whether the sliding was

successful (if it changed the board).
● Empty spaces can be represented as 0s.
● Tiles slide all the way, unless it makes contact with other

tiles or reaches the edge of the box.
● Few things to check:

○ Combine if two equal tiles are side by side
○ Once one tile is merged, it cannot merge with another tile.
○ Move if there is empty space
○ Update the score

● 4 4 4 4 -> 0 0 8 8

Worksheet

