

Week 7 Discussion

Wednesday, 11/13/19

Reminders

Midterm review session tomorrow (8pm Solis Hall)

Midterm 2 next Monday, November 18

PSA5 Submission due Wednesday, November 20 11:59pm

Today's agenda

- Overview of the PSA
 - Part 1 Recursion exercises
 - Part 2 Code review
 - Part 3 Shapes

PSA5, Part 1 Recursion exercises

Recursion Visualized

GC€€GLE	recursion	Q
	All Books Videos Images News More Settings	Tools
	About 10,300,000 results (0.37 seconds)	
	Did you mean: recursion	
	Dictionary	
	recursion	Q
	re·cur·sion	
	/rəˈkərZHən/ ୶)	
	NOUN MATHEMATICS LINGUISTICS	
	the repeated application of a recursive procedure or definition. a recursive definition. plural noun: recursions 	

... well played Google

Recursion

- Recursion is when a method calls itself often with altered arguments
- We will use it to make complex shapes like this:

Why Recursion?

• We can use this to "divide and conquer" complex problems by breaking them down into numerous simpler parts

Base case

- A recursive method must include a "base case", so that it knows when to stop calling itself and end the recursion.
- When recursively calling a method itself, it must be called with different parameters. It should eventually reach the base case

Base case

Which of these is the base case?

Base case

Which of these is the base case?

Practice

```
A:
What will the following code print?
                                                      4, 8, 12, 16, ..., 100,
public class Program {
  public static void main(String[] args) {
                                                      B:
    recurse(4, 100);
                                                      4, 8, 16, 32, 64,
  }
  public static void recurse(int i, int m) {
                                                      C:
    if (i < m) {
                                                      100, 96, 92, 88, ..., 4,
      System.out.print(i + ", ");
      recurse(i * 2, m);
                                                      D:
                                                      64, 32, 16, 8, 4,
```

Practice

```
A:
What will the following code print?
                                                      4, 8, 12, 16, ..., 100,
public class Program {
  public static void main(String[] args) {
                                                      B:
    recurse(4, 100);
                                                      4, 8, 16, 32, 64,
  public static void recurse(int i, int m) {
                                                      C:
    if (i < m) {
                                                      100, 96, 92, 88, ..., 4,
      System.out.print(i + ", ");
      recurse(i * 2, m);
                                                      D:
                                                      64, 32, 16, 8, 4,
```

Bonus Question: What is the base case in this code?

Practice

```
A:
What will the following code print?
                                                      4, 8, 12, 16, ..., 100,
public class Program {
  public static void main(String[] args) {
                                                      B:
    recurse(4, 100);
                                                      4, 8, 16, 32, 64,
  public static void recurse(int i, int m) {
                                                      C:
    if (i < m) {
                                                      100, 96, 92, 88, ..., 4,
      System.out.print(i + ", ");
      recurse(i * 2, m);
                                                      D:
                                                      64, 32, 16, 8, 4,
```

Bonus Question: The base case is when i >= m, in which case the code does not call the recurse method again.

```
public class Factorial {
   public static void main(String[] args) {
     System.out.println(factorial(5));
   }
   public static int factorial(int num){
     if (num == 1 || num == 0) {
        return 1;
     }
     return factorial(num-1) * num;
   }
}
```

```
public class Factorial {
   public static void main(String[] args) {
      System.out.println(factorial(5));
   }
   public static int factorial(int num){
      if (num == 1 || num == 0) {
        return 1;
      }
      return factorial(num-1) * num;
   }
}
```



```
public class Factorial {
   public static void main(String[] args) {
      System.out.println(factorial(5));
   }
   public static int factorial(int num){
      if (num == 1 || num == 0) {
        return 1;
      }
      return factorial(num-1) * num;
   }
}
```



```
public class Factorial {
   public static void main(String[] args) {
      System.out.println(factorial(5));
   }
   public static int factorial(int num){
      if (num == 1 || num == 0) {
        return 1;
      }
      return factorial(num-1) * num;
   }
}
```

Num = 4factorial return * 4

factorial retur

Num = 5 return * 5

main print(_____

```
public class Factorial {
 public static void main(String[] args) {
    System.out.println(factorial(5));
  }
 public static int factorial(int num) {
    if (num == 1 || num == 0) {
      return 1;
    return factorial(num-1) * num;
```

```
factorial Num = 3
return ____ * 3
```

```
Num = 4factorialreturn ____ * 4
```

factorial

main

Num = 5 return * 5

print(____

```
public class Factorial {
  public static void main(String[] args) {
    System.out.println(factorial(5));
                                                                 Num = 2
                                                       factorial
  }
                                                                 return * 2
  public static int factorial(int num) {
    if (num == 1 || num == 0) {
                                                                 Num = 3
      return 1;
                                                       factorial
                                                                 return * 3
    return factorial(num-1) * num;
                                                                 Num = 4
                                                       factorial
                                                                 return * 4
                                                                 Num = 5
                                                       factorial
                                                                 return * 5
                                                                 print(
                                                         main
```

```
Num = 1
                                                        factorial
                                                                   return 1
public class Factorial {
  public static void main(String[] args) {
    System.out.println(factorial(5));
                                                                  Num = 2
                                                        factorial
  }
                                                                   return * 2
  public static int factorial(int num) {
    if (num == 1 || num == 0) {
                                                                  Num = 3
       return 1;
                                                        factorial
                                                                  return * 3
    return factorial(num-1) * num;
                                                                  Num = 4
                                                        factorial
                                                                           * 4
                                                                  return
                                                                  Num = 5
                                                        factorial
                                                                   return * 5
                                                                   print(
                                                          main
```

```
factorial
                                                                   return 1
public class Factorial {
  public static void main(String[] args) {
    System.out.println(factorial(5));
                                                                   Num = 2
                                                         factorial
  }
                                                                   return
  public static int factorial(int num) {
    if (num == 1 || num == 0) {
                                                                   Num = 3
       return 1;
                                                         factorial
                                                                   return * 3
    return factorial(num-1) * num;
                                                                   Num = 4
                                                         factorial
                                                                   return
                                                                            * 4
                                                                   Num = 5
                                                         factorial
                                                                   return * 5
                                                                   print(
                                                           main
```

Num = 1

* 2

```
public class Factorial {
   public static void main(String[] args) {
      System.out.println(factorial(5));
   }
   public static int factorial(int num){
      if (num == 1 || num == 0) {
        return 1;
      }
      return factorial(num-1) * num;
   }
}
```

```
factorial Num = 2
return 1 * 2
Num = 3
factorial return * 3
```

```
Num = 4factorialreturn ____ * 4
```

factorial

main

Num = 5 return * 5

print(____

```
public class Factorial {
   public static void main(String[] args) {
     System.out.println(factorial(5));
   }
   public static int factorial(int num){
     if (num == 1 || num == 0) {
        return 1;
     }
     return factorial(num-1) * num;
   }
}
```


factorial

Num = 5 return * 5

main print(_____

```
public class Factorial {
   public static void main(String[] args) {
      System.out.println(factorial(5));
   }
   public static int factorial(int num){
      if (num == 1 || num == 0) {
        return 1;
      }
      return factorial(num-1) * num;
   }
}
```



```
public class Factorial {
   public static void main(String[] args) {
     System.out.println(factorial(5));
   }
   public static int factorial(int num){
     if (num == 1 || num == 0) {
        return 1;
     }
     return factorial(num-1) * num;
   }
}
```



```
public class Factorial {
   public static void main(String[] args) {
      System.out.println(factorial(5));
   }
   public static int factorial(int num){
      if (num == 1 || num == 0) {
        return 1;
      }
      return factorial(num-1) * num;
   }
}
```


Caveat aka Pitfalls of Recursion

Stack Overflow: Stack growing into Heap

Caveat aka Pitfalls of Recursion

Caveat aka Pitfalls of Recursion

PSA5, Part 2 Code review

Code Review

- In industry, code reviews are performed to make sure other people's code is up to standards
 - It also helps you improve your own code
- Assigned two files (find assigned files linked in write-up) but just need to review one
- Three parts:
 - What's good
 - Logic and functionality errors
 - Miscellaneous comments (other comments)

PSA5, Part 3 Shapes

Intro to JavaFX

- JavaFX is a GUI library full of fun things to play around with, such as shapes, animations, and text
- We will be using JavaFX to create shapes in the draw() methods

General process:

- 1. Given a stage
- 2. Create a group
- 3. Pass in the group to create a scene
- 4. Add children to the group
- 5. Set the scene on the stage
- 6. Show the stage!

A look at TestLines.java

- 1. Given a stage
- 2. Create a group
- 3. Pass in the group to create a scene
- 4. Add children to the group
- 5. Set the scene on the stage
- 6. Show the stage!

public void start(Stage primaryStage) {
 primaryStage.setTitle("TestLines");
 Group root = new Group(); // Pass in "root" to your draw methods
 Scene scene = new Scene(root, 500, 500); // Change window size here

l = new Line8B(new Point(0,500), new Point(500,0),"Jose"); l.draw(root, Color.LIGHTBLUE, false); System.out.println(l.toString());

// Don't modify this
primaryStage.setScene(scene);
primaryStage.show();

Introducing the Components of Shapes

Point.java and Line8B.java are provided files, you should NOT edit or change them.

Can be found on the writeup!

Shape

- An abstract class
- private instance variable called shapeName
- Two constructors: one no-arg, one that takes a String
- public getter method getShapeName()
- public setter method setShapeName()
- public abstract method named draw() that takes in a Group, Color, and boolean
 - boolean determines whether or not the shape is filled
- public toString() method that prints out the shape name
- public method getRandomColor() implementation is in the write-up!

private :	String shapeName	
	Ch ()	
 public public 	Shape() Shape(String name)	
, hapiic	snape(string name)	
public	String getShapeName()	
 public 	void setShapeName(String name)	
public	String toString()	
public	abstract void draw(Group group, Color c, boolean	fill)

> public static Color getRandomColor(

Testing Shape.java on Gradescope

- Use Gradescope to make sure your Shape.java is working!
- Make sure you are using the correct modifiers and names
- You should be able to compile Line8B.java after implementing Shape
- If there is an error, DO NOT modify Line8B.java
 - Debug your Shape.java instead

Meet the Shapes

(these are given to you)

Point

- Has two private int instance variables, x and y
- Constructors:
 - First constructor takes in a <u>x and y</u> coordinate as a pair of ints
 - The second constructor takes in <u>no arg</u>uments and creates a point at (0,0)
 - The third constructor is a copy constructor that takes in a Point
- Getters and setters
- toString() method which gets called when the Point object is used as an argument inside a print statement
 - System.out.println(new Point()) is equivalent to
 - o System.out.println(new Point().toString())

Line8B extends Shape

- <u>Two Point</u> objects are used to define a single line
- Constructors:
 - Takes in two Point objects without a name. Default name is "NoName".
 - Takes in two Point objects with a String as a name
 - Deep copying of a Line8B object. One with a name input and one without
- Getters and setters
- toString() method that prints a description of the line

A look at Line8B.java

TestLines.java:

Line8B.java:

Line8B l = new Line8B(new Point(0,0), new Point(500,500),"Maria");
l.draw(root, Color.PINK, false);
System.out.println(l.toString());

@Override

public void draw (Group group, Color c, boolean fill) {
 // note that fill is unused -- that's special for the line.
 Line line = new Line();
 line.setStartX(start.getX());
 line.setStartY(start.getY());
 line.setEndX(end.getX());
 line.setEndY(end.getY());
 line.setStroke(c);

// necessary because otherwise the line is so thin it's faded
line.setStrokeWidth(2);

group.getChildren().add(line);

Why do we have to do this?

Meet the Shapes

(that you need to implement)

Shapes Overview

- Three different shapes that must be implemented
 - Square.java
 - Triangle.java
 - Circle8B.java
- Extends the Shape abstract class
- <u>draw()</u> method to display the normal shape on canvas
- Special draw method that uses recursion to display a special pattern formed by the specific shape

Circle8B extends Shape

• Defined by

- Point: <u>center</u> of circle
- int: length of radius
- public getter methods to get the center point and radius
- private setter methods for them
- public toString() method
- Implement the draw method defined in abstract class Shape
 - Use the JavaFX library!
 - Remember to add the Circle8B object to the group's children in draw

Square extends Shape

• Defined by

- Point: coordinates of <u>upper-left</u> corner
- int: <u>length</u> of the sides
- public getter methods
- private setter methods
- public toString() method
- Implement the draw method defined in abstract class Shape

Triangle extends Shape

- Given 3 points, draw 3 lines connecting the points.
- To draw the Triangle, which JavaFX shape can we use?
 - Hint: what's the most generic shape type that Triangle belongs to?
- Fill or make the triangle an outline based off the fill boolean

Meet the Fancy Draw Methods

Fancy draw methods

- Circle, Square, and Triangle each have a unique method that will draw an artistic pattern with recursion!
- Each method is different and each shape only has access to one of them.

drawBullsEye(Group group, boolean fill, int n)

- We start by drawing the circle normally
 - Then, we recurse
- Recursively draw the circle over and over again, reducing the radius each time by 13 until n reaches 0.
 - Hint: Think about how to change the radius for each recursive call

drawTriforce(Group group, boolean fill, int n)

- Similar logic to Circle
- Draw another Triangle inside of the original Triangle and then draw a Triangle inside of that.....
- Remember: Triangle has instance variables p1, p2, and p3 (which are Points).

drawGrid(Group group, boolean fill, int n)

- Similar logic to Circle
- This time, we draw four Squares
 - One on each corner
 - Hint: Think about which Square constructor you want to use given you have access to instance vars upperLeft and side
- Ex: How to calculate this point?
- Given this upperLeft coordinate and side?

Fibonacci

- It is a sequence where each element is the sum of the previous 2 elements
- 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

- It is a sequence where each element is the sum of the previous 2 elements
- <u>0, 1</u>, 1, 2, 3, 5, 8, 13, 21, ...
- 0 + 1 = 1

- It is a sequence where each element is the sum of the previous 2 elements
- 0, <u>1, 1</u>, <u>2</u>, 3, 5, 8, 13, 21, ...
- 1 + 1 = 2

- It is a sequence where each element is the sum of the previous 2 elements
- 0, 1, <u>1, 2</u>, **3**, 5, 8, 13, 21, ...
- 1 + 2 = 3

- It is a sequence where each element is the sum of the previous 2 elements
- 0, 1, 1, <u>2, 3</u>, <u>5</u>, 8, 13, 21, ...
- 2 + 3 = 5

- It is a sequence where each element is the sum of the previous 2 elements
- 0, 1, 1, 2, <u>3, 5</u>, **8**, 13, 21, ...
- 3 + 5 = 8

- It is a sequence where each element is the sum of the previous 2 elements
- 0, 1, 1, 2, 3, <u>5, 8</u>, <u>13</u>, 21, ...
- 5 + 8 = 13

- It is a sequence where each element is the sum of the previous 2 elements
- 0, 1, 1, 2, 3, 5, <u>8, 13</u>, <u>21</u>, ...
- 8 + 13 = 21

Fibonacci

- Instance Variable:
 - o static final int arcLength = 90; // every arc is a
 quarter circle
- Method:
 - public static void draw(Group group, int centerX, int centerY, int prevRadius, int currRadius, int startAngle, int n)

Example: TestGoldenRatio.java

• <u>1</u>, 1, 2, 3, 5, 8, 13, 21, … (we're omitting 0 for the purposes of this assignment)

• 1, <u>1</u>, 2, 3, 5, 8, 13, 21, ...

Length of new Square = 1

• 1, 1, <u>2</u>, 3, 5, 8, 13, 21, ...

• 1, 1, 2, <u>3</u>, 5, 8, 13, 21, ...

• 1, 1, 2, 3, <u>5</u>, 8, 13, 21, ...

• 1, 1, 2, 3, 5, <u>8</u>, 13, 21, ...

• 1, 1, 2, 3, 5, 8, <u>13</u>, 21, ...

Length of new Square = 13

• 1, 1, 2, 3, 5, 8, 13, <u>21</u>, ...

Length of new Square = 21

Arc a = new Arc(centerX, centerY, currRadius, currRadius, startAngle, arcLength);

0 $x^{2}+y^{2}=4$ 0° x Ż 270

270°

draw(Group group, int centerX, int centerY, int
prevRadius, int currRadius, int startAngle, int n)

- Draw a Fibonacci diagram!
- Draw "n" arcs in the diagram
- centerX and centerY are the coordinates of the center of the square the arc is in
- startAngle ranges from 0 360°

How to select next startAngle?

- The arc grows counterclockwise from the middle
- It is rotated left during each iteration
- What would you add to the current angle?
- Make sure it does not go out of bounds 360 degrees

How to select next centerX and centerY?

- Depends on what the current angle is
- Think of what the four different scenarios are
- Accordingly, we want to move the center along the x and y axis

Now what?

- What will the new radius be?
 - Hint: what property does our sequence have?
- Once you have all the values for the **next** arc that will be drawn, recurse!

TestGoldenRatio.java

TestMickey.java

Circle: Head; Center: Point: (250, 250); Radius: 100 Circle: Left ear; Center: Point: (150, 150); Radius: 50 Circle: Right ear; Center: Point: (350, 150); Radius: 50

TestPietMondrian.java

Comparison International			
			-
			4
			-

... there are more tests given to you in the starter files

Write your own to see if they match intended behavior!