
Week 7 Discussion

Wednesday, 11/13/19

Midterm review session tomorrow (8pm Solis Hall)

Midterm 2 next Monday, November 18

PSA5 Submission due Wednesday, November 20 11:59pm

Reminders

● Overview of the PSA

○ Part 1 - Recursion exercises

○ Part 2 - Code review

○ Part 3 - Shapes

Today’s agenda

PSA5, Part 1
Recursion exercises

Recursion Visualized

… well played Google

● Recursion is when a method calls itself - often with altered arguments

● We will use it to make complex shapes like this:

Recursion

● We can use this to "divide and conquer" complex problems by breaking
them down into numerous simpler parts

Why Recursion?

● A recursive method must include a "base case",

so that it knows when to stop calling itself and

end the recursion.

● When recursively calling a method itself, it

must be called with different parameters. It

should eventually reach the base case

Base case

Base case
Which of these is the base case?

public static void rec(int i) {
 if (i < 2) {

return; // A
 }
 rec(i-1); // B
}

Base case
Which of these is the base case?

public static void rec(int i) {
 if (i < 2) {

return; // A
 }
 rec(i-1); // B
}

What will the following code print?

public class Program {
 public static void main(String[] args) {
 recurse(4, 100);
 }
 public static void recurse(int i, int m) {
 if (i < m) {

 System.out.print(i + ", ");
 recurse(i * 2, m);
}

 }
}

Practice
A:
4, 8, 12, 16, …, 100,

B:
4, 8, 16, 32, 64,

C:
100, 96, 92, 88, …, 4,

D:
64, 32, 16, 8, 4,

What will the following code print?

public class Program {
 public static void main(String[] args) {
 recurse(4, 100);
 }
 public static void recurse(int i, int m) {
 if (i < m) {

 System.out.print(i + ", ");
 recurse(i * 2, m);
}

 }
}

Practice
A:
4, 8, 12, 16, …, 100,

B:
4, 8, 16, 32, 64,

C:
100, 96, 92, 88, …, 4,

D:
64, 32, 16, 8, 4,

Bonus Question: What is the base case in this code?

What will the following code print?

public class Program {
 public static void main(String[] args) {
 recurse(4, 100);
 }
 public static void recurse(int i, int m) {
 if (i < m) {

 System.out.print(i + ", ");
 recurse(i * 2, m);
}

 }
}

Practice
A:
4, 8, 12, 16, …, 100,

B:
4, 8, 16, 32, 64,

C:
100, 96, 92, 88, …, 4,

D:
64, 32, 16, 8, 4,

Bonus Question: The base case is when i >= m, in which case the
code does not call the recurse method again.

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

print(___)main

Num = 5
return ___ * 5factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return ___ * 4factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return ___ * 4factorial

Num = 3
return ___ * 3factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

Recursion Tracing / Stack Frames

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return ___ * 4factorial

Num = 3
return ___ * 3factorial

Num = 2
return ___ * 2factorial

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return ___ * 4factorial

Num = 3
return ___ * 3factorial

Num = 2
return ___ * 2factorial

Num = 1
return 1factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return ___ * 4factorial

Num = 3
return ___ * 3factorial

Num = 2
return ___ * 2factorial

Num = 1
return 1factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return ___ * 4factorial

Num = 3
return ___ * 3factorial

Num = 2
return 1 * 2factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return ___ * 4factorial

Num = 3
return 2 * 3factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return ___ * 5factorial

Num = 4
return 6 * 4factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(___)main

Num = 5
return 24 * 5factorial

Recursion Tracing / Stack Frames

public class Factorial {
 public static void main(String[] args) {
 System.out.println(factorial(5));
 }
 public static int factorial(int num){

if (num == 1 || num == 0) {
 return 1;
}
return factorial(num-1) * num;

 }
}

print(120)main

Caveat aka Pitfalls of Recursion
Stack Overflow:
Stack growing into Heap

Caveat aka Pitfalls of Recursion
Stack Overflow:
Stack growing into Heap

Caveat aka Pitfalls of Recursion
Stack Overflow:
Stack growing into Heap

STACKOVERFLO
W

PSA5, Part 2
Code review

● In industry, code reviews are performed to make sure other people's

code is up to standards
○ It also helps you improve your own code

● Assigned two files (find assigned files linked in write-up) but just need to

review one

● Three parts:
○ What’s good

○ Logic and functionality errors

○ Miscellaneous comments (other comments)

Code Review

PSA5, Part 3
Shapes

● JavaFX is a GUI library full of fun things to play around with, such as

shapes, animations, and text

● We will be using JavaFX to create shapes in the draw() methods

General process:

1. Given a stage

2. Create a group

3. Pass in the group to create a scene

4. Add children to the group

5. Set the scene on the stage

6. Show the stage!

Intro to JavaFX

1. Given a stage

2. Create a group

3. Pass in the group to create a scene

4. Add children to the group

5. Set the scene on the stage

6. Show the stage!

A look at TestLines.java

Circle8B

Can be found on the writeup!

● An abstract class

● private instance variable called shapeName
● Two constructors: one no-arg, one that takes a String
● public getter method getShapeName()
● public setter method setShapeName()
● public abstract method named draw() that takes in a Group, Color, and

boolean

○ boolean determines whether or not the shape is filled

● public toString() method that prints out the shape name

● public method getRandomColor() implementation is in the write-up!

Shape

● Use Gradescope to make sure your Shape.java is working!

● Make sure you are using the correct modifiers and names

● You should be able to compile Line8B.java after implementing Shape

● If there is an error, DO NOT modify Line8B.java
○ Debug your Shape.java instead

Testing Shape.java on Gradescope

Meet the Shapes

(these are given to you)

● Has two private int instance variables, x and y
● Constructors:

○ First constructor takes in a x and y coordinate as a pair of ints

○ The second constructor takes in no arguments and creates a point at (0,0)

○ The third constructor is a copy constructor that takes in a Point

● Getters and setters

● toString() method which gets called when the Point object is used as an

argument inside a print statement

○ System.out.println(new Point()) is equivalent to

○ System.out.println(new Point().toString())

Point

● Two Point objects are used to define a single line

● Constructors:

○ Takes in two Point objects without a name. Default name is "NoName".

○ Takes in two Point objects with a String as a name

○ Deep copying of a Line8B object. One with a name input and one without

● Getters and setters

● toString() method that prints a description of the line

Line8B extends Shape

A look at Line8B.java

TestLines.java:

Line8B.java:
Why do we have
to do this?

Meet the Shapes

(that you need to implement)

● Three different shapes that must be implemented
○ Square.java

○ Triangle.java

○ Circle8B.java

● Extends the Shape abstract class

● draw() method to display the normal shape on canvas

● Special draw method that uses recursion to display a special pattern formed

by the specific shape

Shapes Overview

● Defined by

○ Point: center of circle

○ int: length of radius

● public getter methods to get the center point

and radius

● private setter methods for them

● public toString() method

● Implement the draw method defined in

abstract class Shape
○ Use the JavaFX library!

○ Remember to add the Circle8B object to

the group’s children in draw

Circle8B extends Shape

● Defined by
○ Point: coordinates of upper-left corner

○ int: length of the sides

● public getter methods

● private setter methods

● public toString() method

● Implement the draw method defined in

abstract class Shape

Square extends Shape

● Given 3 points, draw 3 lines connecting

the points.

● To draw the Triangle, which JavaFX shape

can we use?
○ Hint: what’s the most generic shape type

that Triangle belongs to?

● Fill or make the triangle an outline based

off the fill boolean

Triangle extends Shape

Meet the Fancy Draw Methods

● Circle, Square, and Triangle each have a unique method that will

draw an artistic pattern with recursion!

● Each method is different and each shape only has access to one of them.

Fancy draw methods

● We start by drawing the circle normally
○ Then, we recurse

● Recursively draw the circle over and

over again, reducing the radius each

time by 13 until n reaches 0.
○ Hint: Think about how to change the

radius for each recursive call

drawBullsEye(Group group, boolean fill, int n)

● Similar logic to Circle
● Draw another Triangle inside of the

original Triangle - and then draw a

Triangle inside of that……
● Remember: Triangle has instance

variables p1, p2, and p3 (which are

Points).

drawTriforce(Group group, boolean fill, int n)

● Similar logic to Circle
● This time, we draw four Squares

○ One on each corner

○ Hint: Think about which Square

constructor you want to use given you

have access to instance vars

upperLeft and side

● Ex: How to calculate this point?

● Given this upperLeft coordinate and

side?

drawGrid(Group group, boolean fill, int n)

Fibonacci

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

What is a fibonacci sequence?

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

● 0 + 1 = 1

What is a fibonacci sequence?

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

● 1 + 1 = 2

What is a fibonacci sequence?

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

● 1 + 2 = 3

What is a fibonacci sequence?

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

● 2 + 3 = 5

What is a fibonacci sequence?

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

● 3 + 5 = 8

What is a fibonacci sequence?

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

● 5 + 8 = 13

What is a fibonacci sequence?

● It is a sequence where each element is the sum of the previous 2 elements

● 0, 1, 1, 2, 3, 5, 8, 13, 21, …

● 8 + 13 = 21

What is a fibonacci sequence?

● Instance Variable:
○ static final int arcLength = 90; // every arc is a

quarter circle

● Method:
○ public static void draw(Group group, int centerX, int

centerY, int prevRadius, int currRadius, int startAngle,
int n)

Fibonacci

What you have to draw

Example:

TestGoldenRatio.java

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, … (we're omitting 0 for the purposes of this assignment)

Length = 1

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, …

Length of new
Square = 1

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, …

Length of new
Square = 2

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, …

Length of new
Square = 3

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, …

Length of new
Square = 5

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, …

Length of new
Square = 8

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, …

Length of new
Square = 13

What you have to draw

● 1, 1, 2, 3, 5, 8, 13, 21, …

Length of new
Square = 21

What you have to draw Length of new
Square = 43

0°

90°

180°

270°

090

180 270

● Draw a Fibonacci diagram!

● Draw "n" arcs in the diagram

● centerX and centerY are the coordinates of the center of the square the

arc is in

● startAngle ranges from 0 - 360°

draw(Group group, int centerX, int centerY, int

prevRadius, int currRadius, int startAngle, int n)

● The arc grows counterclockwise from the middle

● It is rotated left during each iteration

● What would you add to the current angle?

● Make sure it does not go out of bounds - 360 degrees

How to select next startAngle?

● Depends on what the current angle is

● Think of what the four different scenarios are

● Accordingly, we want to move the center along the x and y axis

How to select next centerX and centerY?

● What will the new radius be?
○ Hint: what property does our sequence have?

● Once you have all the values for the next arc that will be drawn, recurse!

Now what?

TestGoldenRatio.java

TestMickey.java

TestPietMondrian.java

… there are more tests given to you in

the starter files

Write your own to see if they match

intended behavior!

