Week 6 Discussion

Wednesday, 11/6/19

Reminders

PSA4 Submission due Tuesday, November 12 11:59pm

For students that are missing discussion participation and you
clicked in, we will handle it all at once at the end of the quarter.

Extra credit: Beating the raccoon, but fix your code first!

Today s agenda

e Inheritance Review

e Overview of the PA
e (Game mechanics
e C(Critters you have to make

Inheritance Practice

PSA4 Overview

Complex hierarchy of classes

e All subclasses inherit from

Critter and have their
own implementation

e No need to worry about
abstract classes for now

225"
-]
an il

==

Overriding

Methods like eat (), getColor (),and getAttack () are inherited
from the Critter superclass.

e The Critter’simplementation doesn’t do anything useful, so a
Critter object would be useless and lose in the arena.

e We must override these methods and make them be more useful to

ensure the survival of our Critters.

Critter World

e \World is divided into cells with

coordinates
e Upper-left cellis (0, 0)
® Xxincreases to the right, y

increases downward

X:0,Y:

0

w(idmore Critters: DESKTOP-HK59JFV 100.90.54.221 fe80:0.... — O X

o -

s Tu
T

o
o

s Tu 6’ c 0

i Load from Web... |

Turtle

50 alive
+ 0 kills
+ 0 food
=150 TOTAL

Leopard
50 alive
+ 0 kills
+ 0 food
=150 TOTAL

MyCritter
50 alive
+ 0 kills
+ 0 food
=150 TOTAL

Sloth

50 alive
+ 0 kills
+ 0 food
=150 TOTAL

Turtle

s 50 alive
s i + 0 kills
+ 0 food
=150 TOTAL

00
088 o

q
0T u
Tu .

[-
0 moves Tick

Reset

[JHusky background colors [_|Debug

Accept requests:

OAlways @ Ask (O Never

Meet the Methods

Movement

Movement

® On each round of the simulation, the
simulator asks each Critter object
which direction it wants to move by calling
its getMove method

¢ ACritter canmoveNorth, South,
West, East, or Center once per round

e The world is finite but there is wrap around

Eating

Critters encounter food in the simulation world
e ACritter’s eat method will decide whether or not it eats

® Critterswho eattoo much gointo sleep mode temporarily, where
they become vulnerable

o)

-
+~
c
9
Ll

Fighting

When two animals collide in the world (at the same location), they fight
(if they are different species)

The loser dies and is removed from the game

Critters can ROAR, POUNCE, or SCRATCH

ROAR beats SCRATCH, SCRATCH beats POUNCE, POUNCE beats ROAR -

o Rock-Paper-Scissors logic

e Ifthereis atie, determine the winner randomly
e C(Critters can also FORFEIT, always lose unless the opponent FORFEIT
as well

Mating

If two animals of the same species collide (at the same location), they
"mate" to produce a baby

e Both Crittersarevulnerable to attack while mating: any other animal
that collides with them will defeat them

® An animal can mate only once during its lifetime.
e The "baby" will be a full adult by birth and will spawn next to the parent
critters when they finish mating.

Scoring

e The simulator keeps a score for each class of animal, shown on the right

side of the screen

® ACritter'sscoreisbased on how many of that Critter are alive,
how much food they have eaten, and how many other Critters they
have defeated.

Meetthe Critters

Critter.java

e Provided for you
® Other classes will inherit from this class

e A useful template for all of its descendants

Starfish extends Critter

® Does not move
® Does not eat

® FORFEITSs everytime

Turtle extends Critter

Always moves WEST

® cat () only when no hostile
Critter adjacent to it

e Attacks with ROAR 50% and
FORFEIT the other 50%.
o How can we calculate this?

Feline extends Critter

Moves new random direction every
third move
o Example: N,N,N,W,W,W,S,S,S, ...

® catsevery third time of encountering
food and not eating
o Example: false, false, true, false,
false, true, ...

Always POUNCESs on attack

Lion extends Feline

Overrides most of Feline's
functionality except getAttack ()

Moves in a clockwise square pattern

Only eats food if hungry (won a fight
and hasn’t eaten yet since the win)

o Sleeping restores hunger

Leopard extends Feline

e Lots of method overriding, just like
with Lion

e Shares confidence between all
Leopards
o What keyword does this for us?

® (confidence * 10) % chance of
eating

e Confidence changes based on wins
and losses

Ocelot extends Leopard

Only override getColor () and
generateAttack ()

® Override generateAttack() to
change what attack will be selected

Don't override getAttack ()

Elephant extends Critter

Shared goalX and goalY variables
o AllElephants move to this point

® getMove ()
o Once the first Elephant reaches
the goal, the goal changes for all
Elephants

® BesuretocheckifanElephant has
reached the goal at the beginning of
getMove ()

buffBehavior() & debuff()

These methods are defined in Critter class and you will need to
override them in each Critter class based on how the Critter
should behave for the buffer effect

buffBehavior () adds the buffer effect for that Critter

debuff () removes the buffer effect for that Critter

Remove the buff effects in the next round after you add the buffer effects

Lion's Buff Effect

e Buff Effect: Change the display name
to LION since Lions are the kings of
the Animal Kingdom

e Remove the Buff Effect: Change the
display name back to Lion

Leopard’'s Buff Effect

[
e Buff Effect: Change its display name to

lalalala~~~~ since Leopards are happily

running fast

e Remove Buff Effect: Change its display
name back to Lpd

Ocelot's Buff Effect

Buff Effect: Follow Leopard’s buff
action - they run fast too!

e Remove Buffer Effect: Change its
name back to Oce

Starfish's Buff Effect

Buff Effect: Transparency by changing
the display name to an empty string so
no one can see them

Remove Buff Effect: Change the display
name back to original

These are already implemented for you
as an example, but Starfish has another
effect...

® voild teleport (Polint currentLocation,
Critter[][] arena)
o Modify the point (location of a Starfish)toa
random coordinate within the arena
m The arena will update this automatically
o Set the previous location of the Starfishin
the arenatonull

More Inheritance Practice Problems

public class Vehicle {
String name;
int year;
public void startEngine() ({
System.out.println ("Engine") ;

}
public String getName () {

return name;

}
}

@Override
public void startEngine () {
System.out.println ("VROOM") ;

}

public class Car extends Vehicle {

public class Motorcycle extends Vehicle {
@Override
public void startEngine () ({
System.out.println ("ZO0OM") ;

public static void main(String[] args) ({
Vehicle v = new Vehicle() ;
v.startEngine () ;
Vehicle ¢ = new Car();
c.startEngine() ;
Motorcycle m = new Motorcycle() ;
m.startEngine () ;

}
// What is the output?

public class Vehicle {
String name;
int year;
public void startEngine() ({
System.out.println ("Engine") ;

}
public String getName () { }

return name;

}

public class Car extends Vehicle {
@Override
public void startEngine () {
System.out.println ("VROOM") ;

}
}

public class Motorcycle extends Vehicle {

@Override
public void startEngine() {
System.out.println ("ZOOM") ;

} public static void main(String[] args) ({

Vehicle v = new Vehicle();
v.startEngine () ;

Vehicle ¢ = new Car();
c.startEngine() ;
Motorcycle m = new Motorcycle() ;

m.startEngine () ;

// What is the output?
Engine
VROOM
ZOOM

Inheritance Practice 2

public class Vehicle {
public void startEngine() ({ A:
System.out.println("Starting Engine") ;

}
} B:
Car0

What gets printed?

Starting Engine

public class Car extends Vehicle ({
public void startEngine (int x) ({ C:
System.out.println("Car " + x);

| compiler error

}

public static void main(String[] args) ({
Vehicle ¢ = new Car();
c.startEngine () ;

}

Inheritance Practice 2

public class Vehicle {
public void startEngine() {

This gets printed.

System.out.println("Starting Engine") ; A: _ _
} Starting Engine
}
B:
public class Car extends Vehicle { Car0
public void startEngine (int x) { .
System.out.println("Car " + x); C. _
} compiler error

}

public static void main(String[] args) ({
Vehicle ¢ = new Car();
c.startEngine () ;

}

Inheritance Practice 3

public class Vehicle {
public void startEngine() ({ A:
System.out.println("Starting Engine") ;

}
} B:
Car 1

What gets printed?

Starting Engine

public class Car extends Vehicle ({
public void startEngine (int x) ({ C:
System.out.println("Car " + x); '

| compiler error

}

public static void main(String[] args) ({
Vehicle ¢ = new Car();
c.startEngine (1) ;

}

Inheritance Practice 3

public class Vehicle {
public void startEngine() ({ A:
System.out.println("Starting Engine") ;

}
} B:
Car 1

This gets printed.

Starting Engine

public class Car extends Vehicle ({
public void startEngine (int x) ({ C:
System.out.println("Car " + x);

} compiler error

}

public static void main(String[] args) ({
Vehicle ¢ = new Car();
c.startEngine (1) ;

}

Inheritance Practice 4

public class Vehicle {
public void startEngine() ({ A:
System.out.println("Starting Engine") ;

}
} B:
Car 1

What gets printed?

Starting Engine

public class Car extends Vehicle ({
public void startEngine (int x) ({ C:
System.out.println("Car " + x);

| compiler error

}

public static void main(String[] args) ({
Car ¢ = new Car();
c.startEngine (1) ;

}

Inheritance Practice 4

public class Vehicle {
public void startEngine() ({ A:
System.out.println("Starting Engine") ;

}
} B:
Car 1

This gets printed.

Starting Engine

public class Car extends Vehicle ({
public void startEngine (int x) ({ C:
System.out.println("Car " + x);

| compiler error

}

public static void main(String[] args) ({
Car ¢ = new Car();
c.startEngine (1) ;

}

// Inheritance Constructor Example 1
public class Dog {
public String name;
public Dog() {
name = "Dog";
}

}
public class Husky extends Dog {

public Husky () ({
name = "Husky";

}

// in main ()

Dog sydney = new Huskv();
System.out.println (sydney.name) ;

// Inheritance Constructor Example 1
public class Dog {
public String name;
public Dog() {
name = "Dog";
}

}
public class Husky extends Dog {

public Husky () ({
name = "Husky";

}

// in main ()

Dog sydney = new Huskv();
System.out.println (sydney.name) ;
Answer: Husky

// Inheritance Constructor Example 2
public class Dog {
public String name;
public Dog() {
name = "Dog";
}

}
public class Husky extends Dog {

public Husky () ({
// do nothing

}

// in main

Dog sydney = new Huskv();

Husky cindy = new Husky /()

System.out.println (sydney.name + " " + cindy.name) ;

// Inheritance Constructor Example 2
public class Dog {
public String name;
public Dog() {
name = "Dog";
}

}
public class Husky extends Dog {

public Husky () ({
// do nothing call super() by default

}

// in main

Dog sydney = new Huskv();

Husky cindy = new Husky /()

System.out.println (sydney.name + " " + cindy.name) ;
Answer: Dog Dog

// Inheritance Constructor Example 3

public class Dog { public class Husky extends Dog {
public String name; public Husky () {
public Dog() { // do nothing
name = "Dog"; }
} public Husky (String name) {
public Dog(String name) { // do nothing
this.name = name; }

} }

// in main

Dog sydney = new Huskv():;

Husky cindy = new Husky ("husky");
System.out.println (sydney.name + " " + cindy.name) ;

// Inheritance Constructor Example 3

public class Dog { public class Husky extends Dog {
public String name; public Husky () {
public Dog() { // do nothing
name = "Dog"; }
} public Husky (String name) {
public Dog(String name) { // do nothing
this.name = name; }

} }

// in main

Dog sydney = new Huskv();

Husky cindy = new Husky ("husky");
System.out.println (sydney.name + " " + cindy.name) ;
Answer: Dog Dog

// Inheritance Constructor Example 4

public class Dog { public class Husky extends Dog {
publ%c String name; public Husky () {
public Dog() { // do nothing
name = "Dog"; }
} public Husky (String name) {
public Dog(String name) { super (name) ;
this.name = name; }

} }

// in main

Dog sydney = new Huskv():;

Husky cindy = new Husky ("Husky");
System.out.println (sydney.name + " " + cindy.name) ;

// Inheritance Constructor Example 4

public class Dog { public class Husky extends Dog {
public String name; public Husky () {
public Dog() { // do nothing
name = "Dog"; }
} public Husky (String name) {
public Dog(String name) { super (name) ;
this.name = name; // super() not called

} }

// in main
Dog sydney = new Huskv():;

Husky cindy = new Husky ("Husky");
System.out.println (sydney.name + " " + cindy.name) ;
Answer: Dog Husky

Inheritance Practice 5

public class Vehicle {
public Vehicle (int x) {
System.out.println ("NEW VEHICLE " + X);

public class Plane extends Vehicle {
public Plane() {
super (1) ;
System.out.println ("NEW PLANE") ;

public static void main(String[] args) {
Vehicle v
Plane c

new Vehicle(2) ;
new Plane() ;

What gets printed?

A:
NEW VEHICLE 2
NEW PLANE

B:

NEW VEHICLE 2
NEW VEHICLE 1
NEW PLANE

C:
compiler error

Inheritance Practice 5

public class Vehicle {
public Vehicle (int x) {
System.out.println ("NEW VEHICLE " + x);

public class Plane extends Vehicle {
public Plane() {
super (1) ;
System.out.println ("NEW PLANE") ;

public static void main(String[] args) {
Vehicle v
Plane c

new Vehicle(2) ;
new Plane() ;

This gets printed.

A:
NEW VEHICLE 2
NEW PLANE

B:

NEW VEHICLE 2
NEW VEHICLE 1
NEW PLANE

C:
compiler error

Inheritance Practice 6

public class Vehicle {
public Vehicle (int x) {
System.out.println ("NEW VEHICLE " + X);

public class Plane extends Vehicle {
public Plane() {
super (1) ;
System.out.println ("NEW PLANE") ;

public static void main(String[] args) {
Vehicle v
Plane c

new Vehicle(2) ;
new Plane (3);

What gets printed?

A:

NEW VEHICLE 2
NEW VEHICLE 1
NEW PLANE

B:

NEW VEHICLE 2
NEW VEHICLE 3
NEW PLANE

C:
compiler error

Inheritance Practice 6

public class Vehicle {
public Vehicle (int x) {
System.out.println ("NEW VEHICLE " + X);

}
}

This gets printed.

A:
NEW VEHICLE 2
NEW VEHICLE 1

NEW PLANE
public class Plane extends Vehicle { _
public Plane() { B:
super (1) ; NEW VEHICLE 2
System.out.println ("NEW PLANE") ; NEW VEHICLE 3
} NEW PLANE
}
C:
public static void main(String[] args) ({ compiler error

Vehicle v = new Vehicle(2) ;

Plane ¢ = new Plane(3); -We don’t inherit the constructor method-

Inheritance Practice /

public class Vehicle {
public Vehicle(int x) {
System.out.println ("NEW VEHICLE " + x);

public class Plane extends Vehicle {
public Plane () ({
System.out.println ("NEW PLANE") ;

public static void main(String[] args) ({
Vehicle v
Plane c¢

new Vehicle (2) ;
new Plane() ;

What gets printed?

A:
NEW VEHICLE 2
NEW PLANE

B:

NEW VEHICLE 2
NEW VEHICLE O
NEW PLANE

C:
compiler error

Inheritance Practice /

public class Vehicle {
public Vehicle (int x) {
System.out.println ("NEW VEHICLE " + X);

public class Plane extends Vehicle {
public Plane() {
super(); // why?
System.out.println ("NEW PLANE") ;

public static void main(String[] args) {
Vehicle v
Plane c

new Vehicle(2) ;
new Plane() ;

This gets printed.

A:
NEW VEHICLE 2
NEW PLANE

B:

NEW VEHICLE 2
NEW VEHICLE O
NEW PLANE

C:
compiler error

Inheritance Practice 8

public class Vehicle {
public Vehicle() ({
System.out.println ("NEW VEHICLE") ;
}
}

public class Plane extends Vehicle {
public Plane() {
this (1) ;
System.out.println ("YAY") ;
}
public Plane(int x) {
System.out.println ("NEW PLANE") ;
}
}

public static void main(String[] args) {
Vehicle v = new Vehicle();
Plane ¢ = new Plane();

}

A:

NEW VEHICLE
NEW PLANE
YAY

B:

NEW VEHICLE
NEW VEHICLE
NEW PLANE
YAY

C:
NEW VEHICLE
NEW VEHICLE
NEW VEHICLE
NEW PLANE

YAY

What gets printed?

Inheritance Practice 8

public class Vehicle {
public Vehicle() ({
System.out.println ("NEW VEHICLE") ;

}
}

public class Plane extends Vehicle {
public Plane() {
this (1) ;
System.out.println ("YAY") ;
}
public Plane(int x) {
System.out.println ("NEW PLANE") ;
}
}

public static void main(String[] args) {
Vehicle v = new Vehicle();
Plane ¢ = new Plane();

I YAY

This gets printed.

A:

NEW VEHICLE
NEW PLANE
YAY

B:

NEW VEHICLE
NEW VEHICLE
NEW PLANE
YAY

C:

NEW VEHICLE
NEW VEHICLE
NEW VEHICLE
NEW PLANE

