
Week 5 Discussion

Wednesday, 10/29/19



Reminders
Quiz 2 on Monday, November 4

PSA3 Final Submission due Tuesday, November 5 11:59pm



Today’s agenda
● Quick high level overview of the files, specifically 

Streamline.java

● What you have to write

● There is no extra credit for this assignment.



How it all fits together

public static void main(String args[]) {
  StreamLine game = new StreamLine(...);
  game.play();
}

GameManager.java

GameState currentState;
ArrayList<GameState> previousStates;

play() {
  // calls other StreamLine and
  // GameState methods
}

StreamLine.jav
a

int playerRow;
int playerCol;
….
char[][] board;

GameState.jav
a

...

int playerRow;
int playerCol;
...
char[][] board;

GameState.java

int playerRow;
int playerCol;
...
char[][] board;

GameState.java

int playerRow;
int playerCol;
...
char[][] board;

GameState.java



Streamline.java and its components

GameState currentState;
● Tracks the current state of the board

List<GameState> previousStates;
● Tracks all the previous states of the board

● This is what enables you to undo (will discuss later)



Streamline.java and its components



Constructors
public Streamline()
● Initialize the two instance variables

○ GameState currentState;
○ List <GameState> previousStates;

● Add 3 random obstacles and 3 random zappers to the board



Constructors
public Streamline(String filename)
● Initialize currentState based on information provided by filename 

(using loadFromFile())

This is given to you in the write-up :D



void play()
● Indefinitely reads user input from the console until

○ Player passes the level OR

○ Player quits the game

● Things you should know how to do:

○ Read user input from the console (Scanner)

○ Switch (case) statements to do actions depending on what user 

inputted



Scanner: file I/O and console I/O
To read from the console:

● Scanner inputReader = new Scanner(System.in);

To read from a file:
● Scanner fileReader = new Scanner(new File(“someFile.txt”));

Methods: next(), nextInt(), nextLine(), etc…
● Scanner documentation

https://docs.oracle.com/javase/10/docs/api/java/util/Scanner.html


switch (case) statements
switch(value) {
  case value1: 
    // statements (1)
    break;
  
  case value2:
    // statements (2)
    break;

  default:
    // statements (3)
}

if (value == value1) {
    // statements (1)
} else if (value == value2) {
    // statements (2)
} else {
    // statements (3)
}



void recordAndMove(Direction direction)
● Method should create a copy of current game state for manipulation

○ Deep copy vs. shallow copy

○ Did we make a constructor that lets us do this?

● Move the GameState  based direction.

● What if direction is null?

● Check that the game state actually changed

○ How could you check equality?

● Save old GameState  values to previousStates

○ previousStates  is a List!

○ Lists that hold what kinds of Objects?

○ Where are we adding to in the lists?

● Set our currentState  to the new GameState

GameState

GameState
copy

GameState references

GameState object
(in memory)

GameState
current
State

Two references pointing to the 
same object in memory



void undo()
● Undo should undo the last taken action

● How/where are we saving actions? In previousStates

● previousStates is a List

● How do we remove from a List Object?

● What index will we be removing from?

● Can we undo when we haven’t done a move yet?

GameState
Object

GameState
Object

GameState
Object

GameState 
currentState

List<GameState> previousStates

Instance variable

Instance variable 
currentState  
refers to some 
GameState  object in 
the List 
previousStates



void loadFromFile(String filename) 
throws IOException



Read the file content

Initialize appropriate 
parameters

Create GameState  and 
fill the board

Spaces!

We have to read spaces instead of 
ignoring them.

Hint: Using Scanner class next() 
may not be a good idea.

Another hint: What if we just read the 
whole line as a String and start from 
there? 

void loadFromFile(String filename) 
throws IOException



void saveToFile()
● Write the game state to a file in an EXACT format as the diagram in loadFromFile(). 

● Make sure the output matches exactly. 

● Once finished, print a message to indicate that the file was saved successfully. 

● Use PrintWriter to write to files.



PrintWriter: file I/O 
● Prints formatted representations of objects to a text-output stream. 

● Useful methods examples, refer to the documentation for more info.

○ Constructor: PrintWriter(File file)

○ Print a value: print(int i) prints an integer to the file

○ Print a line: println(int i) prints an integer AND terminates the line. 

Quick Demo!



Style
Remember to have on all files that you edit, INCLUDING testers:

● File headers

● Class headers

● Method headers

● Inline comments

● Proper indentation

● Descriptive variables

● No magic numbers

○ Exception: You can have magic numbers in your tester files

● No lines over 80 characters

● Proper Javadoc convention



this vs no this
int x;

char y;

public Try() {

  y = ‘a’;

  x = 1;

}

int x;

char y;

public Try(int x, char y) {

  this.x = x;

  this.y = y;

}

Be sure to differentiate between the local variables and instance variables.
Same goes for methods.

int x; //instance

char y;

public Try(int x,char y) {

  x = x;

  y = y;

}


