
Week 4 Discussion

Wednesday, 10/23/19

Reminders
PSA3 Checkpoint due Tuesday, October 29 11:59pm

PSA3 Final Submission due Tuesday, November 5 11:59pm

Today’s agenda
● Introduction to Streamline

● GameState.java and its methods

What is Streamline
● Streamline is a puzzle game

● Want to navigate to the end

● Previously traveled tiles become obstacles

Demo

https://francoisvn.itch.io/streamline

GameState.java
● Provided instance variables

○ char[][] board
○ int playerRow
○ int playerCol
○ int goalRow
○ int goalCol
○ boolean levelPassed

● DO NOT ADD any additional instance variables to this file.

Constructors
● Detailed Constructor: public GameState (int height, int

width, int playerRow, int playerCol, int goalRow,

int goalCol)

○ Initialize board with given parameters and other instance variables

● Copy Constructor: public GameState (GameState other)

○ Given another GameState and initialize instance variables based on

that other GameState

○ Be sure to do a deep copy for arrays (a new array!) instead of just

pointing to the same one

public GameState (GameState other)

int goalCol
int goalRow
….
char board[][]

other

@

X

X

0

int goalCol
int goalRow
….
char board[][]

this

public GameState (GameState other)

int goalCol
int goalRow
….
char board[][]

other

@

X

X

0

int goalCol
int goalRow
….
char board[][]

this

This is a shallow copy!
(not what we want)

public GameState (GameState other)

int goalCol
int goalRow
….
char board[][]

other

@

X

X

0

int goalCol
int goalRow
….
char board[][]

this

@

X

X

0

This is a deep copy!

public String toString()

● Return a String representation of the board

● Implementation Idea:

○ Add the top border

○ Add row by row and column by column,

making sure to add the goal and player

when found

○ Add the bottom border

| O G |
| O |
| O |
| |
| |
@

public void rotateCounterClockwise()

● Rotate the game board counterclockwise once

● Change the instance variables as needed based on rotation (positions of

player, goal, etc.)

Why are we rotating our board??

Review of 2D arrays in Java

<dataType> [] [] <arrayName> = new <dataType> [rows] [columns];

Ex. int [] [] table = new int[4] [2];

table[3][0] = 4; table[2][1] = 3;

table[1][0] = 8; table[0][1] = 6;

Index 0 1

0 0 6

1 8 0

2 0 3

3 4 0

Review of 2D arrays in Java
Memory diagram representing 2D arrays as multiple arrays >>>

Stores references if storing objects rather than primitive data

types:

0 6

8 0

0 3

4 0

0

1

2

3

@A @B

@C @D

2D array Heap

@A {...}

@B {...}

@C {...}

@D {...}

Rotating the Board

public int countEmptyTiles()

● Return the number of empty tiles within our game board

● How do we know if a tile is empty?

● This is a helper method that you can use for addRandomObstacles()

and addRandomZappers()

public void addRandomObstacles(int count)

● Add count obstacles onto the board in random locations

○ How do we randomize the locations?

● Return immediately if count is less than 0 or there are count is greater

than the number of available spots

○ Use countEmptyTiles()
● Do not override player's position, goal position, or other existing

entities.

○ When placing obstacles on the board, only count the placement if it

is an empty position.

public void addRandomZappers(int count)

● Add count zappers onto the board in random locations

● Similar to addRandomObstacles() but you must also randomize the

zapper to add onto the board

○ How do we do this?

● AGAIN: Do not override player's position, goal position, or other existing

entities.

○ When placing obstacles on the board, only count the placement if it

is an empty position.

java.util.Random

● Allows you to generate pseudo-random numbers

● How can we test our code if it is generating random values?

○ Pass in your own seed

● Example:
○ Random rand = new Random(123);
○ System.out.println(rand.nextInt(10)); // outputs 2
○ System.out.println(rand.nextInt(10)); // outputs 0
○ System.out.println(rand.nextInt(10)); // outputs 6

● You are free to specify a seed in your code to test your methods.

● We will not be deducting points for using your own seed for your Random

objects.

https://docs.oracle.com/javase/10/docs/api/java/util/Random.html

public void moveLeft()

● Move the player's current position left until it should stop

○ When should it stop?

● Leave a trail of TRAIL_CHARs for all positions passed through

● Check to see if the player has passed the level

○ Set levelPassed = true, return

● Game ends when:
○ playerRow == goalRow
○ playerCol == goalCol
○ levelPassed == true
○ board[playerRow][playerCol] == board[goalRow][goalCol]
○ board[playerRow][playerCol] == PLAYER_CHAR

public void move(Direction direction)

● Use rotateCounterClockwise() and moveLeft()
● High level algorithm

○ Rotate some number of times to orient the Snake in the correct

direction.

○ Move left.

○ Rotate back to the original board position/orientation.

● Look in Direction.java to help you determine how many times you

have to rotate to get to the right orientation

public boolean equals(Object other)

● Compares calling object (this) and other object

● To override the equals method

○ If other is null, return false

○ If other is not of type GameState, return false

■ Use the instanceof operator

○ Check the contents of both objects

■ What should we check? Hint: Slide 6

■ All fields of both objects must be the same!

