
1 Back to Top

Programming Assignment 1 (PA1) - Cool

Milestone Due: Wednesday, April 17 @ 11:59 pm

Final Due: Wednesday, April 24 @ 11:59 pm

Assignment Overview Getting Started Example Input Detailed Overview Milestone Functions

Post-Milestone Functions Unit Testing README File Extra Credit Turnin Summary

 Assignment Overview

The purpose of this programming assignment is to build your knowledge of the ARM assembly language,

especially branching and looping logic, calling assembly routines from within a C program, calling C functions

from within assembly routines, allocating space for local variables, passing parameters and returning values,

using Unix command line arguments, and learning some useful Standard C Library routines.

In this assignment you are writing a program that takes in 2 inputs from the command line and prints a Cool S

design to stdout. Check out the Wikipedia page for info on Cool S. See man ascii for a map of the ASCII

character set. This assignment will require appropriate error checking and reporting (as documented below).

Start early! Remember that you can and should use man in order to lookup information on specific C

functions. For example, if you would like to know what type of parameters strtol() takes, or what

strtol() does to errno, type man -s3 strtol. Also, take advantage of the tutors in the lab. They are

there to help you learn more on your own and help you get through the course!

 Grading

● README: 10 points - See README Requirements here and questions below

○ http://cseweb.ucsd.edu/~ricko/CSE30READMEGuidelines.pdf

● Compiling: 5 points - Using our Makefile; no warnings. If what you turn in does not compile with the

given Makefile, you will receive 0 points for this assignment. NO EXCEPTIONS!

● Style: 20 points - See Style Requirements here

○ Note: Character literals are considered as magic numbers as well (except '\0' which has ASCII

value of 0)

○ http://cseweb.ucsd.edu/~ricko/CSE30StyleGuidelines.pdf

● Correctness: 65 points

○ Milestone (15 points) - To be distributed across the Milestone functions (see below)

○ Make sure you have all files tracked in Git.

● Extra Credit: 5 points - View Extra Credit section for more information.

● Wrong Language: You will lose 10 points for each module in the wrong language, C vs. Assembly or

vice versa.

NOTE: If what you turn in does not compile with the given Makefile, you will receive 0 points for this assignment.

 Getting Started

Follow these steps to acquire the starter files and prepare your Git repository.

https://en.wikipedia.org/wiki/Cool_S
http://cseweb.ucsd.edu/~ricko/CSE30READMEGuidelines.pdf
http://cseweb.ucsd.edu/~ricko/CSE30StyleGuidelines.pdf

2 Back to Top

Gathering Starter Files:

The first step is to gather all the appropriate files for this assignment. Connect to pi-cluster via ssh.

$ ssh cs30xyz@pi-cluster.ucsd.edu

Create and enter the pa1 working directory.

$ mkdir ~/pa1

 $ cd ~/pa1

Copy the starter files from the public directory.

$ cp ~/../public/pa1StarterFiles/* ~/pa1/

Starter files provided:

pa1.h

test.h

pa1Strings.h

testintervalContains.c

Makefile

drawCrissCross.c

Preparing Git Repository:

You are required to use Git with this and all future programming assignments. Refer to the PA0 writeup for how

to set up your local git repository.

 Example Input

A sample stripped executable provided for you to try and compare your output against is available in the public

directory. Note that you cannot copy it to your own directory; you can only run it using the following command

(where you will also pass in the command line arguments):

$ ~/../public/pa1test

NOTE:
1. The output of your program MUST match exactly as it appears in the pa1test output. You need to

pay attention to everything in the output, from the order of the error messages to the small things like

extra newlines at the end (or beginning, or middle, or everywhere)!

2. We are not giving you any sample outputs. Instead, you are provided some example inputs.

You are responsible for testing all functionalities of the program; the list of example inputs is

not exhaustive or complete. It is important that you fully understand how the program works

and test your final solution thoroughly against the executable.

Note: In the following examples, you will notice that special characters such as $, &, *, ! and @ are surrounded

in single quotes. This is because some special characters are bash meta-characters, which means they will be

interpreted as commands to bash, and not command line arguments to your program. We use single quotes to

tell bash that these characters need to be interpreted as command line arguments for your executable. You do

not need to do anything special in your code to handle this--bash will read the single quotes and will only pass

string inside the quotes to your program as a command line argument.

On a related note, we use $ and surround escape sequences with single quotes (e.g. $'\n') in order to use

them for our arguments. This lets us insert usually non-printable characters. For example, we can use the

syntax to write $'\x01', which is the SOH "Start of Heading" character). If we were to only surround the literal

in single quotes, it would not properly escape the escape sequence (e.g. the escape sequence '\n' would be

interpreted as a literal backslash and then a literal 'n' character).

3 Back to Top

Example input that has error output:

cs30xyz@pi-cluster-001:~/pa1$./pa1

cs30xyz@pi-cluster-001:~/pa1$./pa1 str

cs30xyz@pi-cluster-001:~/pa1$./pa1 8a '$'

cs30xyz@pi-cluster-001:~/pa1$./pa1 9999999999999999999 a

cs30xyz@pi-cluster-001:~/pa1$./pa1 7 $'\n'

cs30xyz@pi-cluster-001:~/pa1$./pa1 8 a a

Example input that has normal output:

cs30xyz@pi-cluster-001:pa1$./pa1 23 '!'

cs30xyz@pi-cluster-001:pa1$./pa1 15 m

 Detailed Overview

The function prototypes for the various C and Assembly functions are as follows.

C routines:

void drawCoolS(int size, char fillChar);

void outputCharNTimes(char ch, int n);

int main(int argc, char * argv[]);

Assembly routines:

int myRem(int dividend, int divisor);

int isDividable(int dividend, int divisor);

int intervalContains(int start, int end, int value);

void outputChar(char ch);

void drawCap(int size, char fillChar, int direction);

For the Milestone, you will need to complete:

 myRem.s

 outputChar.s

isDividable.s

outputCharNTimes.c

intervalContains.s

4 Back to Top

Process Overview:

The following is an explanation of the main tasks of the assignment, and how the individual functions work

together to form the whole program.

This program takes 2 command line arguments:

 $./pa1 size fillChar

Explanation of the Command Line Arguments:

size maximum width of the Cool S

fillChar
the character used to fill in the
Cool S

Drawing the Cool S consists of the following steps:

1. Parse command line arguments in main(), where intervalContains(), myRem() and

isDividable() help with error checking.

a. If there is an error, print the appropriate error message to stderr and exit right away.

b. If there is no error, proceed to print out the Cool S pattern.

2. Draw the Cool S using drawCoolS(), where outputChar(), outputCharNTimes(),

drawCrissCross() and drawCap() are used to print out each individual character that makes up

the different sections of the pattern.

 ^

 /a\

 /aaa\

/aaaaa\

|aa|aa|

|aa|aa|

\aa\aa/

 \aa\/

 /\aa\

/aa\aa\

|aa|aa|

|aa|aa|

\aaaaa/

 \aaa/

 \a/

 v

fillChar

size

5 Back to Top

 Milestone Functions to be Written

Listed below are the modules to be written for the milestone.

myRem.s

int myRem(int dividend, int divisor);

Calculates the remainder when dividing dividend by divisor. This should have the same behavior as the %

operator in C.

Reasons for error:

● divisor is zero → result is undefined (we will not be checking for divide by 0)

Return Value: The remainder.

isDividable.s

int isDividable(int dividend, int divisor);

Tests if the dividend is evenly dividable by the divisor. Return 1 if the dividend is evenly dividable by

the divisor, returns 0 otherwise.

Reasons for error:

● If the divisor is 0, return -1. Note that negative numbers are allowed.

6 Back to Top

Return Value: -1 if error, 1 if dividable, 0 if not dividable.

intervalContains.s

int intervalContains(int start, int end, int value);

Determines whether or not value is inside the interval [start, end]. This interval is inclusive on both ends.

Reasons for error:

● If start is greater than end, return -1 for error.

Return Value: -1 if the interval is invalid, 1 if value is contained in the interval, 0 if value is not contained in

the interval.

outputChar.s

void outputChar(char ch);

This assembly module prints the character ch to stdout (see man -s3 printf). This is very similar to the

example assembly module given below. The main difference is that outputChar() just prints a single

character (so think about how that might affect the format string fmt).

Example: This example assembly module takes in a string that represents a class, and prints out a message

saying that that class is your favorite class.

printFavoriteClass("CSE 30") → "My favorite class is CSE 30"

7 Back to Top

outputCharNTimes.c

void outputCharNTimes(char ch, int n);

Prints the character ch to stdout n times. Please note that you may NOT use printf to implement this function.

Hint: Is there a helper function that you could use?

 Post-Milestone Functions to be Written

Listed below are the modules to be written after the milestone functions are complete.

drawCap.s

void drawCap(int size, char fillChar, int direction);

This assembly module will print out individual characters (via calls to outputChar() and

outputCharNTimes()) such that the Cool S caps will be displayed based on the user-supplied values.

NOTE: You will have to allocate space on the stack for local variables and formal parameters.

To help you with this module, you may use these offsets

(on the right) for local variables and parameters. Material

in lecture will cover what these offsets are used for in

depth, and in future assignments you will need to

calculate these offsets yourself. Remember that you will

need to load and store from these locations.

Here’s the equivalent C version of drawCap.c:

8 Back to Top

9 Back to Top

This will be a translation task for you. All of the assembly constructs you will use will have been covered in

lecture and can be referenced in your notes. You are not limited to using the algorithm provided in the link

above, but part of the purpose of this programming assignment is to learn how to write looping/conditional

constructs (branches), to use the simple bl instruction to branch to subroutines with parameter passing, and to

perform simple arithmetic instructions (add/sub, sdiv) in assembly.

We would encourage you to use the linked algorithm for these reasons, however we do not want to suppress

creative thinking - alternative solutions are welcome. However, you must use the "preferred" style of coding

loops, backwards branching logic, as detailed in class: set up an opposite logic branch to jump over the loop

body and a positive logic branch to jump backwards to the loop body. Points will be taken off for not using

backwards branching logic.

As always, you must define constants to avoid using magic numbers. A helpful list of #defines at the top of the

drawCap C version has been provided for you. You must translate these into corresponding .equ directives in

your assembly translation, as #defined constants in C are not (easily) accessible from assembly files.

drawCoolS.c

void drawCoolS(int size, char fillChar);

This function will print out the entire Cool S design using the given size and fillChar specified by the user.

To recreate the Cool S, follow the steps below and use your helper functions (such as drawCap()) to draw

each section. Each output snippet in this description assumes that the size is 7 and the fillChar is 'a'.

1. Draw the top cap. This is just the pyramid-like structure on the top of the S.

 ^

 /a\

 /aaa\

/aaaaa\

2. Draw the first straight section. This refers to the section where there are fillChars partitioned into

two sections by single pipe (|) characters.

○ There is no leading or trailing whitespace.

○ The number of times fillChar repeats in between the pipes is equal to size / 2 - 1.

○ The number of lines of the straight portion also equals size / 2 - 1.

As you can see in the example, only 2 a's are printed in between each pair of pipes, and there are only

2 lines in the example output, since (7 / 2 - 1) == 2.

|aa|aa|

|aa|aa|

3. Draw the criss-cross section. The criss-cross section is where the a's cross over, forming a shape

resembling an X character.

\aa\aa/

 \aa\/

 /\aa\

/aa\aa\

10 Back to Top

4. Draw the second straight section. This should be identical to the first one.

|aa|aa|

|aa|aa|

5. Draw the bottom cap. This is like the top cap, but flipped upside-down.

\aaaaa/

 \aaa/

 \a/

 v

pa1.c

int main(int argc, char * argv[]);

The main function will drive the rest of the program. It will first perform input checking by parsing the command-

line arguments and checking for errors. If all inputs are valid, it will call drawCoolS(). Otherwise, it will print

the corresponding error message and return right away. Remember that many of the error strings have format

specifiers, so be sure to add the appropriate arguments when printing error messages.

First: check that the user entered a valid number of command line arguments. If they didn’t, print the

COOL_S_USAGE to stderr and return EXIT_FAILURE right away.

Now we can parse the command line arguments in the following steps. For all cases, if you encounter an error

condition, print the corresponding error message to stderr and return EXIT_FAILURE immediately:

1. size: set the global variable errno to 0 (see man -s3 errno), then use strtol() to convert the

Cool S size to an int (see man -s3 strtol). Check for the following errors in the order they appear

below.

Error How to Handle

Error converting to int

(errno was set by strtol())

Use snprintf() to build the error string using

SIZE_CONVERT_ERR (make sure the string is null-terminated).

Call perror() to print the string, passing the string as a parameter.

Call fprintf() to print a newline after the error message.

size contains non-numerical characters

(check endptr)

Use fprintf() to print the SIZE_NOT_INT_ERR error message.

size is not in bounds

(not within [MIN_SIZE, MAX_SIZE])

Use fprintf() to print the SIZE_RANGE_ERR error message.

size is not in the format of 4n + 3

(use isDividable())

Use fprintf() to print the SIZE_FORMAT_ERR error message.

11 Back to Top

2. fillChar: extract the first character from the fillChar argument. Check for the following errors in the order

they appear below.

Error How to Handle

Not a single character

(hint: man -s3 strlen)

Use fprintf() to print the SINGLE_CHAR_ERR error message.

char not in bounds

(not within [MIN_CHAR, MAX_CHAR])

Use fprintf() to print the CHAR_RANGE_ERR error message.

3. If no errors were encountered, draw the Cool S by calling the drawCoolS() function, passing in the

appropriate arguments.

4. Return EXIT_SUCCESS.

Return Value: If an error is encountered, return EXIT_FAILURE. Otherwise, return EXIT_SUCCESS.

Unit Testing

You are provided with only one basic unit test file for the Milestone function intervalContains(). This file

only has minimal test cases and is only meant to give you an idea of how to write your own unit test files. You

must write unit test files for each of the Milestone functions, as well as add several of your own

thorough test cases to all of the unit test files. You need to add as many unit tests as necessary to

cover all possible use cases of each function. You will lose points if you don’t do this! You are

responsible for making sure you thoroughly test your functions. Make sure you think about boundary cases,

special cases, general cases, extreme limits, error cases, etc. as appropriate for each function. The Makefile

includes the rules for compiling these tests. Keep in mind that your unit tests will not build until all required files

for that specific unit test have been written. These test files will be collected with the Milestone, they must

be complete before you submit your Milestone.

Unit tests you need to complete:

testmyRem.c

testisDividable.c

testintervalContains.c

testoutputChar.c

testoutputCharNTimes.c

To compile:

$ make testintervalContains

To run:

$./testintervalContains

(Replace “testintervalContains” with the appropriate

file names to compile and run the other unit tests)

We also supply you an extra set of "optimized" Makefile targets for your tester files. These targets will compile

your tester file with all optimizations turned on, similar to how your Milestone functions will be compiled for

grading. Sometimes you will get (un)lucky where your program appears to work even when there is something

wrong (like incorrect memory layout or modifying a register you shouldn't). Compiling with optimizations will

expose some of these hidden problems. Again, this is how the milestone will be tested during grading, so use

the optimization targets to try to expose these issues.

12 Back to Top

However, compiling this way prevents you from using gdb to debug, so make sure to compile the regular way

when debugging and try the optimized targets after your tests pass.

To compile with optimizations on:

 $ make testintervalContains-opt

To run:

 $./testintervalContains-opt

 README File

Remember to follow all of the guidelines outlined in the README Guidelines. If you did the extra credit, write a
program description for it in the README file as well.

Questions to Answer in your README:
Vimdiff Questions

1. Copy the directory that contains 3 files from public directory:

$ cp -r ~/../public/pa1README ~/pa1README

Go to the directory we just copied the files to:

$ cd ~/pa1README

Make your terminal window wide enough to view two files side-by-side, then compare average3V1.s

and average3V2.s with the command:

$ vimdiff average3V1.s average3V2.s

The following should show up:

As you can see, there are 2 differences. The first one is at line 42. average3V2.s does not have the line

to add the correct offset to sp to set fp. The second one is at line 57 for averageV1.s and line 56 for

average3V2.s. The order of pc and fp are switched in average3V2.s, which is highlighted in red.

https://cseweb.ucsd.edu/~ricko/CSE30READMEGuidelines.pdf

13 Back to Top

Spot the 3 differences between average3V1.s and average3V3.s using vimdiff and document them as

the answer to this README question. Be clear about the location of the differences.

C Questions

2. Here is a sample C program that prints out a number:

1 #include <stdio.h>

2

3 void foo(int * x) {

4 ___________;

5 }

6

7 int main() {

8 int a = 3;

9 int * b = &a;

10 foo(b);

11 printf("%d\n", a);

12 }

What line of code needs to be added on line 4 to make the program print 9 ?

3. We have an executable called s. If it is run with the following command, what will the value of argc in

main() be? Why?

 $./s html is the best programming language

Vim Questions

4. (a) What command do you use to delete a single line at the current cursor? (b) What about n number of

lines (including the line at the current cursor)?

5. (a) Which command would you use to copy a line at the current cursor? (b) Then which command to

“paste” the copied line to after the cursor?

6. (a) Which command would you use to show line numbers? (b) Which command to hide line numbers?

7. (a) Which command would you use to move the cursor to line x? (b) Which command to go to the first

line of the file? (c) Which command to go to the last line of the file?

8. (a) Which command would you use to jump the cursor 10 lines down? (b) Which command to jump 10

lines up?

Git Questions

9. What is the Git command to display differences between the local version of a file and the version last
committed?

GDB Questions

Start gdb with your pa1 executable, then set a breakpoint at strtol. Breakpoints are set with the break

command (abbreviated b):

 (gdb) break strtol

Note that you may see this message:

Function "strtol" not defined.

Make breakpoint pending on future shared library load? (y or [n])

14 Back to Top

In this case just hit y to continue.

Run the program (in gdb) with the following command line args:

(gdb) run 19Spring '#'

It’s okay if you see an error like "strtol.c: No such file or directory".

Now you should be at the entry point of the Std C Lib routine strtol called from main.

10. How do you print the value of the string that is the 1st arg in strtol? (The value should be "19Spring")

11. How do you print the hex value of &endptr that is the 2nd arg in strtol? (The value should be

something like 0x7efff - a high stack address - will vary)

Go to the next high level source instruction in main by entering next until you see a C source line from your

main.c file pop up (about 5 times). This should be the next C instruction in main after the function call to strtol.

Again, if you encountered the "strtol" not defined error earlier or "in strtol.c" messages, you may

have to enter next a few times until the code returns to main.

12. How do you print the value returned by strtol? (The value should be 19) Show two ways:

a. Using the name of the local variable you use to hold the return value

b. Displaying the value in the register used to return the value

13. How do you print the character endptr is pointing to? (Should be the character 'S’)

14. How do you print the entire null-terminated string endptr is pointing to? (Should be "Spring")

15. How do you print the decimal value of the global variable errno at this point? (The value should be 0)

Continue the execution of your pa1 in gdb. Type continue, which means resuming program execution up to

the next breakpoint or until termination if no breakpoints are encountered. In this case, the following error

message should be printed and the program will exit with code 01:

Error: size must be an integer in base 10

Run the program again (in gdb) with the following command line args:

 (gdb) run 11111111111111 '#'

You should be at the entry point of the Std C Lib routine strtol called from main. Go to the next source

instruction in main using the next command like before. Again, if you encountered the "strtol" not

defined error or "in strtol.c", you may have to enter next a few times until the code returns to main.

It should be the source-level instruction after the call to strtol passing in 11111111111111 to convert to an

integer. Print the decimal value of errno at this point. The value of errno should be 34 now which is the

value of ERANGE. See the man pages man -s3 errno and man -s2 intro for more information about

errno. Now feel free to continue or quit from gdb.

15 Back to Top

GDB Text User Interface
This can be helpful for debugging.

You can start your program with gdb -tui <executable_name>

Use command layout asm to show the assembly code

Use command layout reg to show all the registers

Use command layout src to show the source code

If the window corrupts during execution, use command refresh or press Ctrl+L to refresh the window.

For example, when we run this on pa0, it will show the following:

Academic Integrity Question

16. What was your process for completing this assignment with integrity?

 Extra Credit

There are 5 points total for extra credit on this assignment.

● Early turnin: [2 Points] 48 hours before regular due date and time

 [1 Point] 24 hours before regular due date and time

 (it’s one or the other, not both)

● [3 Points] Chained Cool S

For extra credit, you’ll be making a program to display a chain of Cool S’s.

Getting Started:

Copy and rename the following file in your pa1 directory.

 $ cp ~/pa1/drawCoolS.c ~/pa1/drawCoolSEC.c

You will also be creating a new assembly module called sumOfDigitsEC.s (more on this later).

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_chapter/gdb_19.html

16 Back to Top

Important: All of your original files must remain unchanged. You will need to turn in all of your original files
plus two new files for the extra credit. Your original program must perform exactly as described in the main
section of the writeup, and should be unaffected by the extra credit. Extra credit will be run as a separate
executable.

Extra Credit Functions To Be Written:

Note that while the names of files to be written are drawCoolSEC.c and sumOfDigitsEC.s, the names of

the functions should be drawCoolS() and sumOfDigits(), respectively.

drawCoolSEC.c

void drawCoolS(int size, char fillChar);

This function will print out the entire Cool S design using the given size and fillChar specified by the user,

with an additional feature that the criss-cross and straight design will repeat i times, where i is the sum of the

digits in size.

sumOfDigitsEC.s

int sumOfDigits(int size, int base);

Calculates the sum of all the digits in size with the given base. The sum is based on the individual digits in

the size, ignoring the sign of the size (e.g. -123 in base 10 has a digit sum of 6). If the base is invalid (less

than 2), then the digit values are undefined, so the sum of digits should just be 0.

Return Value: 0 if the value of base is invalid, else return the sum of digits in size

Compiling:

You can compile the extra credit program using the following command.

 $ make pa1EC

Sample Executable:

A sample test executable is provided for the EC like the sample executable provided for the regular portion of

the assignment. You can run the sample executable using the following command:

$ ~/../public/pa1ECtest

Sample Output:

cs30xyz@pi-cluster-001:~/pa1$./pa1EC 11 a

 ^

 /a\

 /aaa\

 /aaaaa\

 /aaaaaaa\

/aaaaaaaaa\

|aaaa|aaaa|

|aaaa|aaaa|

|aaaa|aaaa|

|aaaa|aaaa|

17 Back to Top

\aaaa\aaaa/

 \aaaa\aa/

 \aaaa\/

 /\aaaa\

 /aa\aaaa\

/aaaa\aaaa\

|aaaa|aaaa|

|aaaa|aaaa|

|aaaa|aaaa|

|aaaa|aaaa|

\aaaa\aaaa/

 \aaaa\aa/

 \aaaa\/

 /\aaaa\

 /aa\aaaa\

/aaaa\aaaa\

|aaaa|aaaa|

|aaaa|aaaa|

|aaaa|aaaa|

|aaaa|aaaa|

\aaaaaaaaa/

 \aaaaaaa/

 \aaaaa/

 \aaa/

 \a/

 v

Here, the criss-cross and bottom pattern repeats twice, as sum is 11 and 1 + 1 = 2.

 Turnin Summary

See the turnin instructions here. Your file names must match the below *exactly* otherwise our Makefile will

not find your files.

Milestone Turnin:

Due: Wednesday night, April 17 @ 11:59 pm

Files required for the Milestone:

myRem.s

outputChar.s

testmyRem.c

testoutputChar.c

isDividable.s

outputCharNTimes.c

testisDividable.c

testoutputCharNTimes.c

intervalContains.s

testintervalContains.c

http://cseweb.ucsd.edu/~ricko/CSE30TurninInstructions.pdf

18 Back to Top

Final Turnin:

Due: Wednesday night, April 24 @ 11:59 pm

Files required for the Final Turn-in:

drawCap.s

intervalContains.s

isDividable.s

myRem.s

outputChar.s

drawCoolS.c

drawCrissCross.c

outputCharNTimes.c

pa1.c

testintervalContains.c

testisDividable.c

testmyRem.c

testoutputChar.c

testoutputCharNTimes.c

pa1.h

pa1Strings.h

test.h

Makefile

README

Extra Credit Files:

sumOfDigitsEC.s

drawCoolSEC.c

If there is anything in these procedures which needs clarifying, please feel free to ask any tutor, the instructor,

or post on the Piazza Discussion Board.

