
pa7.md 7/29/2020

1 / 13

CSE 12 Spring 2020 PA7 - Binary Tree and Runtime
Analysis (100 Points)
Due date: Monday, May 18th @ 11:59PM PDT
(Tuesday, May 19th @ 11:59pm PDT w/ slip day)

Useful Resources:

Throughout this assignment, you may find the following resources helpful. Refer to them BEFORE posting
questions on Piazza.

Reference guide for Linux/Vim/SSH/scp
Connecting to the lab machines remotely
Running bash on Windows
Unix reference sheet
JUnit testing tutorial

Provided Files:

None

Files to Submit:

BinaryTree.java
BinaryTreeTester.java

Goal

In this Programming Assignment, you will implement a Binary Tree and create JUnit tests to verify proper
operation and implementation. You will also be answering questions related to runtime analysis on
Gradescope.

As you get started, please pay attention to the following:

Please read the ENTIRE write-up before getting started.
For this homework and likely all future homework in CSE 12, you must have the same method
signatures and instance variables as defined below.

Getting Started

Compile and Execute with JUnit

Running on UNIX based systems:

Compile: javac -cp ../libs/junit-4.12.jar:../libs/hamcrest-core-1.3.jar:. *.java

Execute: java -cp ../libs/junit-4.12.jar:../libs/hamcrest-core-1.3.jar:.
org.junit.runner.JUnitCore <Tester File>

https://hackmd.io/@hl99/ByE0dv-PU
https://drive.google.com/file/d/1I7b7QXRVCL2rjgiLU9XbWDFa03g9AIjc/view?usp=sharing
https://docs.google.com/document/d/1SMnopsKw0lHWCxkQ0ETgkfLFdfonjGGh4CgfagnFcSU/edit
https://files.fosswire.com/2007/08/fwunixref.pdf
https://www.tutorialspoint.com/junit/junit_environment_setup.htm

pa7.md 7/29/2020

2 / 13

Running on Windows systems:

Compile: javac -cp ..\libs\junit-4.12.jar;..\libs\hamcrest-core-1.3.jar; *.java

Execute: java -cp ..\libs\junit-4.12.jar;..\libs\hamcrest-core-1.3.jar;
org.junit.runner.JUnitCore <Tester File>

Part 1 - Understanding and Testing First
Understanding a Binary Tree and its Operations

In order to write a good tester, you will need a deep understanding of how the classes and methods you are
testing are supposed to work. So before you start writing your tester, you should read part 2 in order to
understand the specific behavior of the binary tree you are implementing.

Test BinaryTree with BinaryTreeTester.java

The repository will not contain a starter tester file. If you do not recall how to set up JUnit tests or need
a refresher, refer to the previous PAs and your previous testers.
You should make sure to also include tests to check that your method throws the correct exceptions
when they are expected to throw them. There are more sophisticated ways to do this (feel free to
investigate and use them), but the simple approach is to do the following (source):

@Test
public void testExceptionMessage() {
 try {
 new ArrayList<Object>().get(0);
 fail("Expected an IndexOutOfBoundsException to be thrown");
 } catch (IndexOutOfBoundsException anIooBException) {
 assertThat(anIooBoundsException.getMessage(),
 is("Index: 0, Size: 0"));
 }
}

Note: If you cannot get the assertThat to work on the lab machines (or your machine) it’s sufficient to assume
that any IndexOutOfBoundsException is correct, and to simply pass in that case (i.e. fail if you do NOT enter
the catch block, and leave the catch block empty).

After final submission, we will be running more extensive tests on your code. The points awarded from
our tests will make up your final grade.

Part 2 - BinaryTree
Once you understand what the behavior of a binary tree is supposed to be, your next task is to create
your own implementation called BinaryTree.

Create a file named BinaryTree.java. BinaryTree is a generic class whose type parameter extends
Comparable.

https://github.com/junit-team/junit4/wiki/Exception-testing

pa7.md 7/29/2020

3 / 13

There are various ways to implement a binary tree. To ensure that you won't lose points, please strictly
follow the guidelines that we have listed.
For this PA, you must use getter/setters, instead of directly accessing instance variables. Failure to do so
will result in failing tests and losing points.
Instance variables: There are two instance variables. The root node and the size. Implement them
based on the specifications below.
Constructors: There are three constructors. Implement them based on the specifications below.
Methods: There are six methods. They are all described below.

Imports:

In previous PAs, you were asked to implement your own Stack and Queue. Now that you have a strong
understanding of the behavior of these data structures, we would like you to be familiar with Java's
implementation of these data structures.

You are only allowed to use these import statements in BinaryTree.java. Do NOT import using the
wildcard (i.e. import java.util.*). Import these individually.

List - java.util.List
LinkedList - java.util.LinkedList
Queue - java.util.Queue

Hint: Queue is an interface so we are unable to instantiate it. As a result, we must use a class, such as
LinkedList, that implements the Queue interface. This means we must do the following to create a queue:
Queue<E> queue = new LinkedList<E>();

Inner Class:

Similar to PA3, you will need to create an inner class. Inside of your BinaryTree class, create a protected class
called Node.

This inner Node class should have the following instance variables, all with the default access modifier:

Node left: the left child of this node
Node right: the right child of this node
E data: the data stored in this node

The inner Node class should also have the following constructors and methods:

Constructor/Method
Name

Description

public Node(E
data)

Set the data instance variable to the argument that was passed in. left and
right should be set to null to represent that we are creating a terminal node (a
node without children).

public void
setLeft(Node
left)

Set the left instance variable to the argument that was passed in.

https://docs.oracle.com/javase/10/docs/api/java/util/List.html
https://docs.oracle.com/javase/10/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/10/docs/api/java/util/Queue.html

pa7.md 7/29/2020

4 / 13

Constructor/Method
Name

Description

public void
setRight(Node
right)

Set the right instance variable to the argument that was passed in.

public void
setData(E data)

Set the data instance variable to the argument that was passed in.

public Node
getLeft()

Return the left child.

public Node
getRight()

Return the right child.

public E
getData()

Return the data stored in this node.

Instance variables:

The BinaryTree class has two instance variables. Note: Do not make these instance variables private, they
should have the default access modifier. Do not add any other instance variables and do not add any
static variables (other than private static final variables to be used as constants).

Node root: The root node of our binary tree. If the binary tree is empty, this instance variable should
be null.
int size: The number of nodes in our binary tree. If the binary tree is empty, this instace variable
should be 0.

Constructors:

public BinaryTree(): The no-args constructor should create an empty binary tree. Empty binary
trees are represented with a root that is null and a corresponding size that is 0.
public BinaryTree(E data): Initialize the instance variables so that we now have a root node
containing data and a size of 1. You can assume that data will never be null.
public BinaryTree(List<E> list): Add each element in the parameter list to the binary tree. The
first element of list should be added first, the second should be added second, and so on. Each
element in list should be inserted into the BinaryTree in level order (see visual below). You can assume
that list will never be null and that elements in list will never be null. Hint: See if there is a
method in BinaryTree that will help you add each element to the binary tree.

Public Methods:

⚠ ⚠ ⚠ When implementing this assignment, you must use the appropriate getters/setters. Do not
access instance variables directly. ⚠ ⚠ ⚠ Some of our Gradescope tests rely on using getters/setters.
Make sure that you are using these getters/setters instead of accessing instance variables directly to avoid
losing points.

Method Name Description Exceptions to Throw

pa7.md 7/29/2020

5 / 13

Method Name Description Exceptions to Throw

public void
add(E
element)

Add a new Node containing element to the binary tree in
level order and updatesize accordingly.

Hint: Use a Queue for level order traversal.

throw
NullPointerException
when element is null

public
boolean
remove(E
element)

Remove the specified element in the binary tree and
replace it with the node in the rightmost position in the
lowest level. Return true if the removal was successful,
meaning that the specified element was found and
removed. Otherwise, return false to indicate an
unsuccessful removal. Update size if necessary.

Note: Be sure that you are searching the binary tree for
element using level order traversal. If there are multiple
occurrences of element in the binary tree, you should
remove and replace the first occurrence of element that
you encounter when performing level order traversal. See
the visualizations below for more information.

throw
NullPointerException
when element is null

public
boolean
containsBFS(E
element)

Check if element is in the binary tree. Return true if
element is in the binary tree and false otherwise.

Note: You must implement this method iteratively and use
BFS. When deciding which node to insert into your queue,
insert the left child first, then the right

throw
NullPointerException
when element is null

public int
getHeight()

Return the height of the binary tree. For our
implementation of a binary tree, an empty binary tree has
a height of 0 and a single root node has a height of 0.

Hint: Math.log() might be useful in this method.

None

public int
getSize()

Return the number of nodes that are in the binary tree. None

public E
minValue()

Return the minimum value stored in the binary tree. If the
binary tree is empty, return null.

To compare the data stored in nodes, be sure to use
compareTo() instead of comparison operators, such as <,
>, <=, and >=.

None

Clarifications

null is not a valid element in the binary tree. It should not ever be in the binary tree. Therefore, be sure
that you are throwing NullPointerException as specified in the method descriptions above.
Duplicate elements are allowed in the binary tree.

pa7.md 7/29/2020

6 / 13

None of your method implementation should use recursion. Implement each method iteratively.
In case you missed it earlier: ⚠ ⚠ ⚠ When implementing this assignment, you must use the
appropriate getters/setters. Do not access instance variables directly. ⚠ ⚠ ⚠

Visualization of BinaryTree

Level Order Traversal (BFS)

Remember, when deciding which node to insert into your queue, insert the left child first, then the right.

The following are visualizations of the behavior of each method.

Calling add() on a full binary tree

pa7.md 7/29/2020

7 / 13

Calling add() on a complete binary tree

pa7.md 7/29/2020

8 / 13

Calling containsBFS()

pa7.md 7/29/2020

9 / 13

Note: The important thing here is the node that determines that the call is true.

Calling remove()

pa7.md 7/29/2020

10 / 13

pa7.md 7/29/2020

11 / 13

Remember, when searching for the node to remove, you must remove the first occurrence from performing a
level order traversal. After you've found the node that you need to remove, there are two ways to replace the
node in question: either change the data stored in the node to be the data of the last node in the tree or to
update the child references of the parent and the last node. We define the last node to be the right-most
node in the lowest level.

Hint: In both cases, after you have determined the node to remove and the last node, you will most likely have
to re-traverse the tree to find the parent of the node that you're removing (except in the case that it's a root
node). To find this node, you may find yourself comparing the node to remove with the left and right children
of a parent node. In this case, == may be helpful (recall what the behavior of == is with respect to Objects).

Another hint: To make sure that your remove() function is working properly, double check all child references
of all affected nodes to ensure that they have the correct left and right references in your tests.

Calling minValue()

Part 3 - Runtime Analysis
For part 3 of this assignment, you will be answering a series of questions related to runtime analysis.

The questions can be found on Gradescope under the assignment: Programming Assignment 7 (Part 2)

You have an unlimited number of attempts and no time limit; however, make sure to submit before the PA
deadline.

pa7.md 7/29/2020

12 / 13

Note: Follow the format guidelines carefully. You may lose points if your answer is incorrectly formatted.

For your convenience, you may also view the questions here.

This worksheet is also part of your PA so feel free to ask tutors/TAs for help! They can help you with any
conceptual questions, just make sure to know what you want to ask to get the best possible help.

Testing
For this PA, we will not be providing descriptions of test cases that we will be testing your code against.
Learning how to create your own test cases is an extremely useful skill. If you need inspiration for your test
cases, refer back to previous assignments.

Although your tester will not be graded for style or correctness, creating your own test cases and testing your
code is the only way to be sure that your code works.

Survey
You can find the weekly reflection survey here. Please fill out the survey, as it will count towards 1 point of
your PA7 score.

Submission
Turning in Your Code

Submit the following files to Gradescope. Please make sure that you submit code to Programming
Assignment 7 (Part 1).

BinaryTree.java
BinaryTreeTester.java

Submit your runtime analysis answers to Programming Assignment 7 (Part 2) on Gradescope.

Important: Even if your code does not pass all the tests, you will still be able to submit your homework to
receive partial points for the tests that you passed. ⚠ Make sure your code compiles in order to receive
partial credit. ⚠

How Your Assignment Will Be Evaluated

Runtime Analysis (44 points)
Correctness (50 points)

Does your code compile? If not, you will get 0 points.
You are responsible for making sure that your program runs correctly under all possible
situations.

Weekly Reflection Survey (1 point)
Coding Style (5 points) We will grade your code style in BinaryTree.java thoroughly.
BinaryTreeTester.java will not be graded for style. Namely, there are a few things you must have in
each file / class / method:

1. File header
2. Class header

https://docs.google.com/document/d/1qOj9JMIb3i_jeV_4YmWcXLbq6OFkyL6J7E3rmlvQZZk/edit?usp=sharing
https://forms.gle/WX5qQSsxA637J6Jw6

pa7.md 7/29/2020

13 / 13

3. Method header(s)
4. Inline comments
5. Proper indentation (do not intermingle spaces and tabs for indentation)
6. Descriptive variable names
7. No magic numbers
8. Reasonably short methods (if you have implemented each method according to specification in this

write-up, you’re fine). This is not enforced as strictly.
9. Lines shorter than 80 characters (Note: tabs will be counted as 4 characters toward this limit. It is a

good idea to set your tab width/size to be 4)
10. Javadoc conventions (@param, @return tags, /** comments */, etc.)

A full style guide can be found here. If you need any clarifications, feel free to ask on Piazza.

https://sites.google.com/view/cse12spr20/style-guide

